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Deep Adversarial Metric Learning

Yueqi Duan, Jiwen Lu

Abstract—Learning an effective distance measurement
between sample pairs plays an important role in visual analysis,
where the training procedure largely relies on hard negative
samples. However, hard negative samples usually account for
the tiny minority in the training set, which may fail to fully
describe the data distribution close to the decision boundary.
In this paper, we present a deep adversarial metric learn-
ing (DAML) framework to generate synthetic hard negatives
from the original negative samples, which is widely applicable
to existing supervised deep metric learning algorithms. Different
from existing sampling strategies which simply ignore numerous
easy negatives, our DAML aim to exploit them by generating
synthetic hard negatives adversarial to the learned metric as
complements. We simultaneously train the feature embedding
and hard negative generator in an adversarial manner, so that
adequate and targeted synthetic hard negatives are created to
learn more precise distance metrics. As a single transformation
may not be powerful enough to describe the global input space
under the attack of the hard negative generator, we further
propose a deep adversarial multi-metric learning (DAMML)
method by learning multiple local transformations for more
complete description. We simultaneously exploit the collaborative
and competitive relationships among multiple metrics, where
the metrics display unity against the generator for effective
distance measurement as well as compete for more training data
through a metric discriminator to avoid overlapping. Extensive
experimental results on five benchmark datasets show that our
DAML and DAMML effectively boost the performance of existing
deep metric learning approaches through adversarial learning.

Index Terms—Metric learning, deep learning, adversarial
learning, hard negative generation, multi-metric.

I. INTRODUCTION

ETRIC learning aims to learn a similarity measurement,

which makes the following clustering and classifica-
tion tasks much simpler. Metric learning methods have been
widely used in numerous visual analysis tasks, such as face
recognition [19], [38], image classification [6], [7], [68], per-
son re-identification [37], [72], [74], and visual tracking [22],
[66]. Existing methods can be mainly divided into two cate-
gories: linear and nonlinear [30]. Conventional linear metric
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Fig. 1. Comparisons of conventional deep metric learning (DML) methods

and the proposed DAML. In this figure, we utilize the number of “3” as
the anchor and positives while other numbers and alphabets are negatives for
intuitive demonstration. We compute the distances between samples according
to the similarity of shapes. Existing DML methods rely on the hard negatives
in the training set, pushing the distribution of negatives to the lower right.
However, they fail to handle the potential hard negatives at the upper right
of the decision boundary. For DAML, we aim to generate synthetic hard
negatives from existing negatives adversarial to the metric, which exploits
numerous easy negatives as complements.

learning approaches learn a Mahalanobis distance metric [7],
[19], [68], while nonlinear approaches usually apply kernel
tricks or deep neural networks to model high-order relation-
ships [6], [27], [41], [53]-[55], [63].

For most supervised deep metric learning (DML)
approaches, the training objective is to maximize the
inter-class variations as well as minimize the intra-class vari-
ations [21], [38]. Therefore, the hard negatives in the training
set will produce large gradients while others are close to zero.
Here, hard negatives are negative samples that are close to
anchors, while easy negatives are those far away from anchors.
As hard negatives usually account for the tiny minority in
the training set, the vast majority of easy negatives samples
make little contribution to metric learning. A natural question
is raised: are easy negatives really useless?

In this work, we consider that easy negatives should not
be ignored as they may have potential to generate important
complements. For example, the shape of the letter “W” is
different from the number “3”. However, after a rotation
of 90 degrees counter-clockwise, it would become a dangerous
hard negative. Fig. 1 illustrates the reason of this phenomenon.
In the training set, hard negatives usually account for the
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tiny minority, which may not fully describe the distribution
of negatives close to the decision boundary. Existing DML
methods simply maximize the relative distance of the observed
hard negative space (which is spanned by the samples in the
training set), while the unobserved hard negatives are still in
danger.

In this paper, we present a deep adversarial metric learn-
ing (DAML) framework to address the limitation, which can
be generally applied to existing supervised DML methods.
Instead of simply using the original negatives in the training
set, our goal is to generate synthetic hard negatives in an
adversarial manner, so that easy negatives can also be exploited
to provide important complements. We simultaneously train
the feature embedding and hard negative generator to obtain
adequate and targeted synthetic hard negatives. Adequate
hard negatives illustrate a complete description of the sample
distribution close to the decision boundary, while targeted
hard negatives expose the limitations of the current feature
embedding. Fig. 1 shows the comparisons between existing
DML methods and DAML.

While DAML learns effective distance measurement
through the generated hard negative samples, only one global
metric may not be discriminative enough to describe the
relationships between samples especially under the attack of
the generator. Once the learned metric fails to have the ability
to correctly classify the synthetic negative samples through
training, the effectiveness of the hard negative generator is
weakened due to the unbalanced fight. To this end, we further
propose a deep adversarial multi-metric learning (DAMML)
method by learning multiple local metrics for more precise
description through a metric generator. We simultaneously
exploit the collaborative and competitive relationships among
metrics. On one hand, all the metrics share the same objective
against the generator by maximizing the inter-class variations
as well as minimizing the intra-class variations. On the other
hand, we learn a metric discriminator for input pairs to decide
the weights for each local metric. In the training procedure,
local metrics are required to compete for more weights of each
training pair as the weights are normalized. As a result, each
metric gains large weights for part of the training samples
so that the local regions described by multiple metrics are
separated. In the test procedure, we also utilize the weights
from the metric discriminator to compute the final distance
between a pair of images in multiple local metrics. Extensive
experimental results on five benchmark datasets illustrate that
the proposed DAML and DAMML improve the performance
of the existing supervised deep metric learning methods in an
adversarial manner.

This paper is an extended version of our conference
paper [14], where we make the following new contributions:

1) We further present a new DAMML method based on

DAML in the conference version by learning multiple
local metrics for more precise distance measurement,
which present stronger discriminative power against the
hard negative generator.

2) We design a metric discriminator to simultaneously

exploit the collaborative and competitive relationships
among multiple metrics. With the discriminator, local
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metrics learn proper weights for each input sample pair
for more precise description, and also compete for the
weights of training samples to avoid overlapping.

3) We conduct more experiments on recent public bench-
mark datasets including In-Shop Clothes Retrieval and
VehicleID to demonstrate the effectiveness of the pro-
posed methods, and present more experimental analysis
for in-depth discussions.

II. RELATED WORK

In this section, we briefly review three related topics: metric
learning, hard negative mining, and generative adversarial
networks.

A. Metric Learning

Metric learning has witnessed great development over the
past decade, which aims to learn effective distance mea-
surement of the input samples. Conventional metric learning
methods learn a linear Mahalanobis distances, where a number
of methods have been presented [7], [17], [31], [45], [50],
[51], [68]. For example, Weinberger and Saul [68] presented
a large margin nearest neighbor (LMNN) method by enforcing
the anchor to share the same labels with its nearest neighbors
by a margin, which is one of the most popular methods in the
literature. Davis et al. [7] proposed an information-theoretic
metric learning (ITML) method to formulate the problem by
minimizing a regularizer of LogDet divergence.

As linear metric learning methods may suffer from non-
linear correlations of samples, kernel tricks are usually
employed [15], [69]. However, it is usually empirical for
these methods to choose a kernel function, which limits their
discriminative power. With the encouraging performance of
deep learning on various tasks, deep metric learning (DML)
approaches have been presented to learn non-linear map-
pings [5], [6], [12], [13], [16], [23], [28], [32], [33], [38],
[41]-[43], [54], [55], [59], [63]. For example, Liu et al. [38]
presented a discriminative deep metric learning (DDML)
method with deep neural networks. Song et al. [55] proposed
a lift structure to better exploit training batches. Ustinova
and Lempitsky [59] presented a histogram loss for deep
metric learning by estimating the distribution of similarities
for sample pairs. Wang et al. [63] presented an angular loss
by constraining the angle relationships inside the triplets.
Isola et al. [26] proposed a deep cross-triplet embedding
algorithm as well as the corresponding sampling strategy for
cross-domain feature representations. Bai et al. [1] presented a
group-sensitive triplet embedding (GS-TRE) method to better
model the intra-class variance for vehicle reidentification.

Besides global metric methods which aim to obtain a single
metric for all instances, some multi-metric learning methods
also have been presented to exploit locality specific informa-
tion [11], [42], [71]. For example, Ding and Fu [8] proposed
a robust transfer metric learning (RTML) method to transfer
the knowledge from the well-labeled domain to the unlabeled
target domain. Wang et al. [64] designed a towards-young
cross-generation model by learning an intermediate domain
for kinship verification. Ding et al. [9] presented generative
semantic dictionary learning (GSDL) method with two-stage
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GANs to identify new objects which are not included in
training data. Bunte et al. [3] proposed a limited rank matrix
learning method, which extended the symmetric squared
matrices in Generalized Metric Learning Vector Quantization
(GMLVQ) [48] to rectangular transformation matrices for
low-dimensional representations. Ye er al. [71] proposed a
unified multi-metric learning (UM?L) framework to exploit
multiple semantic linkages. Opitz et al. [42] presented an
online gradient boosting method to reduce the correlation of
the learners.

B. Hard Negative Mining

Hard negative mining is employed to better exploit
large-scale negative samples for model training in many visual
analysis tasks [10], [21], [49], [52], [54], [65], [73]. Hard
negative mining can be considered as a problem of boot-
strapping, which gradually chooses negatives that trigger false
alarms [52]. For example, Schroff et al. [49] trained FaceNet
with the selected “semi-hard” negatives, which are hard but
the distances are still farther than that of positive-anchor pairs.
Shrivastava er al. [52] presented an online hard example min-
ing (OHEM) approach to train region-based object detectors.
Wu et al. [70] illustrated the importance of sample selection
in DML and proposed distance weighted sampling strategy
with margin based loss. Harwood et al. [21] presented a
smart mining method to efficiently select training samples
for DML. Yuan et al. [73] proposed a hard-aware deeply
cascaded (HDC) embedding method by mining negatives at
multiple hard levels according to the models. Rather than
sampling existing negatives for data mining, we focus on the
exploitation of easy negatives which may have potential to
generate synthetic hard negatives as essential complements.

C. Generative Adversarial Networks

Generative adversarial networks (GANs) have gained much
attention due to their impressive results during the past four
years [4], [18], [25], [35], [39], [44], [47], [61], [67], [75],
where the initial methods have been designed for image gener-
ation [4], [18], [25], [75]. For example, Goodfellow et al. [18]
firstly proposed the framework of GANS to recover the training
data distribution for image generation. Chen et al. [4] pre-
sented InfoGAN to learn disentangled representations with a
mutual information objective. Zhu et al. [75] proposed Cycle-
GAN by introducing a cycle consistency loss for unpaired
image-to-image translation. The key of GANs is the idea of
adversarial learning, where the generator aims to generate
synthetic images that are undistinguishable from the real ones.
Both the generator and the discriminator gradually become
more and more powerful in the process of adversarial train-
ing. Due to the great success of GANs, adversarial learning
methods have been applied to other visual analysis tasks more
resently, such as object detection [67], domain adaptation [35],
[58], face recognition [57], image inpainting [44], and video
analysis [39], [61]. However, to our best knowledge, very
few relevant adversarial learning works have focused on the
fundamental problem of metric learning, which is of significant
importance in image classification and clustering. Different
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Fig. 2. Frameworks of conventional metric learning with triplet embedding
and our proposed DAML. In DAML, we utilize the generated adequate hard
negatives to learn the distance metric instead of the observed negatives to
fully exploit the potential of each negative sample. We train the generator
and the distance metric simultaneously in an adversarial manner, where the
training procedure of the generator follows a carefully designed objective
function Jgen.

from most existing adversarial learning methods which aim
to model the image distributions, the proposed DAML and
DAMML tap the potential of the training data in the feature
space to enhance the discriminative power of the learned
distance metric. We aim to generate synthetic negative samples
from existing ones that shorten the distance to the anchor,
minimize the difference between synthetic and observed neg-
ative samples, and confuse the learned metric. Moreover,
we evaluate the effectiveness of DAML and DAMML on more
complex benchmark datasets than digit data which many GAN
methods have employed.

III. DEEP ADVERSARIAL METRIC LEARNING

In this section, we first present the hard negative generator,
and then elaborate on the approach of deep adversarial metric
learning.

A. Hard Negative Generator

To our best knowledge, existing metric learning methods
take advantage of the observed data to learn distance metrics,
where the hard negative samples produce gradients with large
magnitudes. However, as hard negatives usually account for
the tiny minority, there are two main limitations of the existing
approaches:

1) The observed hard negatives may not be enough to fully
characterize the distributions of negative samples near
the decision boundary, as shown in Fig. 1. In some
cases, most hard negatives only belong to a few identi-
ties, which suffer from limited diversities. The use of
inadequate hard negatives may lead to local optimal
distance metrics, where potential hard negatives in the
unobserved space would probably be misclassified.

2) A large number of easy negative samples are wasted
since they produce gradients close to zero. However,
some of the easy negatives may have potential to
generate synthetic hard negative samples as important
complements to the observed hard negatives, which may
be misclassified by the learned metric.

In this paper, we generate synthetic hard negatives from
observerd easy ones against the trained metric to simultane-
ously address the above two limitations. Fig. 2 shows the
framework of the proposed DAML compared with the con-
ventional deep metric learning methods. Let X = [xq, - -+ , X;,]
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be the input data and Y = [y, --- , y»] be the corresponding
labels, where y; € {1,---,C}. We employ the widely-used
triplet embeddings and contrastive embeddings for explana-
tion. The triplet input {x;, Xi+, X; } consists of an anchor point
X;, a positive point x;r with its label yl.Jr = y;, and a negative
point x; with its label y;” # y;, while the pairwise input for
contrastive embedding utilizes {x;, xl.+} and {x;, x;}.

In general, the objective of metric learning is to learn a
feature embedding to measure the distance of an input pair:

D(xi,x;) = f(0r; xi, X;), (D

where D is the distance between the input pair under the
trained metric, f is the metric function, and 6 is the learned
parameters of f.

For example, in the conventional linear Mahalanobis dis-
tance metric learning, we have

flr:xi,x;) = \/(Xi —x;))TM(x; —x;), 2)

where 0 is the learned matrix M.

Most supervised metric learning methods aim to obtain the
parameters 0y through optimizing a well-designed objective
function:

0y =argnéinfm(ﬁf;x,-,xi*,x;,f), 3)
f

where one of the Xl+ and x; is set default for the contrastive
embedding.

In this paper, we aim to enhance the training procedure
using adversarial hard negative generation. We simultaneously
train the distance metric and the generator in an adversarial
manner by utilizing the synthetic hard negatives as adversary:

9; = argnéi/n Jm(Of; x,-,xl?L,')Zi_, ), )

where X, is the generated negative sample:

X, = g0y x; . xi, X)), 5)

1

and 0, is the parameters of the generator g.

In (5), we aim to generate synthetic negative samples from
original ones, so that we can exploit more easy negatives as
complements to the observed data. As each negative point
would generate different synthetic samples depending on the
anchor and positive point, we simultaneously utilize x;”, x; and
Xl+ as the input of the generator, where we set Xl+ = x; for
the negative pairwise input. Our goal is to train the generator
and the distance metric simultaneously, and we formulate the

objective function of the generator as follows:

Héil’l Jeen = Jhard + 3 Jreg + 22 Jadv
8

N

- 2 — 2

= D (R —xill3 + A1l% —x; 113
i=1

+LIDE;,x)? — DX, x)? —aly)  (6)

where N is the number of the inputs, o is an enforced
positive distance margin between positive-anchor pairs and
negative-anchor pairs, the operation of [-]4 refers to the hinge
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function max (0, -), and A; and A, are two parameters to
balance the contributions of different terms.

The goal of Jharq is to make the synthetic negatives close
to the anchor, which would produce large gradient magni-
tudes for the training procedure of metric learning. Jreg is a
self-regularization term to minimize the difference between the
generated negatives and the original ones. Jyqy aims to gener-
ate the negative samples on which the learned metric would
misclassify, encouraging the difference between the distances
of negative-anchor pairs and the corresponding positive-anchor
pairs smaller than a margin . The procedure of adversarial
training enhances the discriminative power of the learned
metrics to deal with potential unobserved hard negatives.

B. DAML

The framework of adversarial metric learning can be gen-
erally applied to various loss functions of supervised metric
learning, where we simultaneously train the hard negative
generator and the distance metric using the following objective
function:

min J = Jgen + AJm, 7
Og,0¢
where 1 is the parameter to balance the contributions of
different terms, and we develop various embeddings of Jpy
to demonstrate the effectiveness of the proposed adversarial
metric learning.
DAML (cont): For contrastive embeddings,
we employ [20], [38] to define the objective function
as:

N; N;j
In = D x)+ D [a— DE; x4, (8)

i=1 j=1

where N; and N; represent the numbers of positive and
negative pairs, respectively.

DAML (tri): For triplet embeddings, we employ [49], [68]
to define the objective function, which is widely used for the
triplet input:

N
In =D [DKS,x)* = D&, x1)” + als, ©)
i=1
where the objective enforces the distances of negative-anchor
pairs to be larger than the corresponding positive-anchor pairs
by a margin.
DAML (lifted): We also employ [55] for the lifted structure
to define the objective function as follows:

N.
1 1
Jm = 0, Ji+ i), 10
m 2N ;max( l+,l) (10)
Ji+ i = max(max a — 5(xi+), max a — D(x;))
+D(x, xi), (11)

where 5(x) represents the distances of the negative pairs for x.
We suggest referring [55] for more details.

DAML (N-pair): In the N-pair loss [53], the anchor from
each class x, would have one positive sample x;" and C — 1
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Fig. 3. The overall network architecture of the proposed DAML for the triplet input. We simultaneously train the distance metric and the hard negative

generator, where the CNNs and fully connected layers share the same architectures and parameters. The generator takes as input the features extracted from

CNNs, and then generates synthetic hard negatives for deep metric learning.

Algorithm 1 DAML

Input: Training image set, parameters A, A1 and )2, margin «, and
iteration numbers 7.
Output: Parameters of the hard negative generator 6,, and parame-
ters of the metric function 6.
: Pre-train 67 without the hard negative generator.
: Pre-train 6.
for iter =1,2,--- T do
Sample minibatch of m training images.
Produce triplet or pairwise inputs from the batch.
Jointly optimize 64 and 6 using (7).
: end for
: return 6y and 6;.

A >

negative samples xj?, where C is the number of classes and
¢’ # c. For each x, and x", we generate C — 1 synthetic
hard negatives 3(':5 from X:C using the generator. The metric

objective term of DAML (N-pair) is defined as follows:

C

1 ~

Jm:E E log(1 + E exp(D(Xc, X:;) - D(x, Xj))) (12)
c=1 c'#c

where D(x;, xj) = f/f; is the similarity measure used in the
N-pair loss, and f; and f; are the embedded features. See [53]
for complete details.

We simultaneously train the hard negative generator and
the distance metric in a joint manner, and Fig. 3 shows the
overall network architecture. In the training procedure, we first
pre-train the deep metric learning model without the hard
negative generator. Then, we initialize the generator adversari-
ally to the pre-trained metric. Lastly, we jointly optimize both
networks during each iteration end-to-end, where the synthetic
hard negatives are used to train the distance metric. In the test
procedure, as the CNNs and fully connected layers have the
same structures and parameters, we apply the metric network
for similarity measurement without the generator. Algorithm 1
details the approach of DAML.

IV. DEEP ADVERSARIAL MULTI-METRIC LEARNING

In this section, we first detail the approach of deep adver-
sarial multi-metric learning, and then we introduce the imple-
mentation details of the proposed DAML and DAMML.

A. DAMML

While DAML successfully taps the potentials of the easy
negative samples, it only utilize one global metric to describe
the holistic input space, which may not be discriminative
enough especially under the attack of the hard negative gen-
erator. In order to address the limitation, we further propose a
deep adversarial multi-metric learning (DAMML) method to
learn a more precise distance measurement though multiple
local metrics. There are two key challenges in multi-metric
learning [42], [71]: 1) the integration of multiple metrics to
obtain the final distance of a pair of samples, and 2) the
independence of multiple metrics to avoid overlapping. In this
paper, we simultaneously address the problems by learning
a metric discriminator, which decides the weights for each
sample pair on different local metrics:

1) We normalize the feature embedding of each local
metric and learn adaptive weights for different input
pairs. Compared with the hand-crafted methods which
use the same integration strategy for all the samples,
we consider that the integration method for varying
inputs should be data-adaptive. To better measure the
distance between sample pairs in the embedded space,
the weights of multiple metrics should be different
according to the local information of the specific inputs.

2) Objective function and training samples determine the
learned deep metric. If we optimize the network with
the same loss function and training data, the learned
local metrics will be highly correlated and present no
improvements. To address the problem, we still employ
the same loss as a cooperative objective for all the local
metrics, but each sample has different weights for train-
ing varying local metrics. To this end, the correlation
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Fig. 4. The network architecture of the metric discriminator. In this figure,
we set K = 4 for easy illustration. Given a pair of samples {x;, X}, we obtain
the weights for local metrics. We share the parameters for the two flows in
the dashed box, so that the metric discriminator is invariant to the sequence
of the sample pair.
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Fig. 5. The framework of the proposed DAMML approach. In this figure,
we utilize T'4p and T 57 to represent I' (g, Xp) and T' (x4, X57) for short, and we
input two of the samples into the metric discriminator at each time. Though the
metric discriminator, we obtain the weights of local metrics when computing
the final distance of each sample pair.

is reduced as the training weights are different for each
input sample on each local metric.

Let i be the function of the metric discriminator, with the
input as a pair of samples and the output as the weights of
local metrics:

[ (xi,x;) = h(On; xi, X;), (13)

where 0, is the learned parameters of s, and I'(x;,X;) =
[yl.}.,~ ,le]T is the weights of K local metrics for the
input pair {x;,X;}, subject to yi];. > 0 and Zle yl.];. = 1.
We employ a 2-layer fully connected neural network for £,
as shown in Fig. 4. As the weights should be invariant to the
sequence of the input, i.e. I'(x;, x;) = I'(x, X;), we share the
parameters of the two flows of the network.

With the definition of the metric discriminator, we rewrite
the distance between a pair of samples as a weighted sum:

K
D(xi, X)) = D v fiOf; xi. %)), (14)
k=1

where f; and 6;3 are the kth local metric and its parameters,
respectively.

In (14), local metrics have varying weights to compute
the distance between a pair of samples. Through the metric
discriminator, more relevant local metrics gain larger weights
for distance measurement while the others make little con-
tribution. If we set K = 1 in (14), yi];. is equal to 1 and it
will degenerate to the single metric version. Fig. 5 shows the
framework of DAMML.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

For DAMML, we simultaneously train the hard negative
generator, the metric discriminator, and the multiple local
metrics by optimizing the following objective function:

min J = Jgen + tJdis + AJm.
O On.0%

5)

In (15), we directly employ the same Jgen and Jn as
DAML, modifying the distance measurement to (14). As T
simultaneously appears in Jgen and Jm, the metric discrimina-
tor is trained for better measurement of the final distances,
and the hard negative generator works against both metric
discriminator and multiple local metrics.

For Jjis, we encourage each sample pair to be mainly
described by only one local metric rather than multiple local
metrics to avoid overlapping, and we formulate the objective
function to maximize the variance of the weights as follows:

Jais = — Z Var(T'(x;, X))

X, X

1 1
= 2 (i) = )T (T, %)) = ),

Xi X

subject to yi];- > 0, Zyil; =1, (16)
k=1

where Jgis achieves the minimum when one of the weights is

equal to 1 and the others are zero.

In the training procedure, we simultaneously train the hard
negative generator, the metric discriminator and the multiple
local metrics in an end-to-end manner. As all the local metrics
still share the same objective function of Jy,, they cooperate to
learn discriminative distance measurement by maximizing the
inter-class variations and minimizing the intra-class variations.
Meanwhile, for a pair of training samples, each local metric
would receive a weight from the metric discriminator. The
weights determine the proportions for local metrics in final
distance computation, so that the metrics with large weights
produce large gradients in training, and their correlations
are reduced through the competition in weights. In the test
procedure, we still employ the weighted sum as the distance
measurement through the metric discriminator, which is a
data-dependent integration method of the multiple local met-
rics. Fig. 6 shows the overall network architecture of DAMML
and Algorithm 2 details the approach.

B. Implementation Details

We utilized the TensorFlow package through the experi-
ments. We normalized the images into 256 x 256 at first,
and then we performed standard random crop and horizontal
mirroring for data augmentation. For the generator network,
the dimension is 3072 — 1024 — 1024, and the dimension
of the discriminator is 2048 — 1024 — K. For the metric
network, we performed the initialization with GoogLeNet [56]
which was pretrained on the ImageNet ILSVRC dataset [46],
and randomly initialized an added fully connected layer.
We optimized the new layer with 10 times learning rate com-
pared with other layers for fast convergence. We used a 3-layer
fully connected network as the generator by concatenating the
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The overall network architecture of the proposed DAMML for the triplet input. We simultaneously train the hard negative generator, the metric

generator, and the multiple local metrics. To compute the distance between a pair of input samples, we employ the metric discriminator to calculate the
weights for local metrics, where the two networks of the discriminator share the parameters. Then, we obtain the final distance based on normalized local

feature embeddings and the corresponding weights.

Algorithm 2 DAMML

Input: Training image set, parameters A, A1, A2, and p, margin «,
and iteration numbers 7.
Output: Parameters of the hard negative generator 64, the metric
discriminator 05, and the multiple local metric functions 9’}.
: Initialize T' = 1/K.
: Pre-train 91; without the hard negative generator.
: Pre-train 64 and 6),.
: for iter =1,2,--- ,T do
Sample minibatch of m training images.
Produce triplet or pairwise inliuts from the batch.
Jointly optimize 64, 6, and 6% using (15).
end for
: return 6y, 05, and 9}“.

features as the input and generating the synthetic negative as
the output. We empirically fixed the parameters 4, 11, 42 and
was 1, 1,50 and 10° to balance the weights of different terms
based on the parameter analysis in Fig. 7, respectively, and we
followed [68] by setting o to 1. For DAML, as an experimental
study in [55] shows that the embedding size does not largely
affect the performance, we followed [63] to fix the embedding
size to 512 throughout the experiment. We also conducted an
experiment to show the influence of different embedding sizes.
For DAMML, we fixed the sum of multiple embedding sizes
to 512 for fair comparisons, where the embedding size for each
local metric was % We fixed the maximum training iteration
to 20,000 and set the batchsize as 128 for the pairwise input
and 120 for the triplet input.

V. DISCUSSION

In this section, we compare the proposed DAML and
DAMML with relevant methods to highlight the differences.

A. Difference With Existing Hard Negative Mining Methods

Hard negative mining has been widely applied in many
visual analysis tasks and has successfully boosted the

performance of metric learning [21], [73]. The core idea of
hard negative mining is to gradually select dangerous negative
samples which are misclassified by the current machines.
In this paper, we argue that some easy negatives that are not
selected by the miner in the original form may have potential
to become very dangerous. For example, the letter “W” may
not be selected by the hard negative miner for the number “3”.
However, it is able to create a really dangerous synthetic
negative by rotating it by 90 degrees counterclockwise, which
may be even harder than all the observed negatives. In general,
hard negative mining selects useful existing observed samples,
while DAML taps their potential. Moreover, we emphasize that
DAML does not conflict with hard negative mining, where we
can generate more negative samples at first for the following
full selections.

B. Difference With Existing Data Augmentation Methods

The goal of data augmentation is to apply transformation to
the images without altering the labels, which have been widely
applied to improve the performance of CNN and prevent from
overfitting [40]. The key difference between DAML and data
augmentation is that we simultaneously learn the generator
and feature embedding in an adversarial manner to obtain
metric-specific synthetic hard negatives instead of applying
fixed transformation to all the images. The generated samples
especially target at the limitations of the current feature
embedding for effective direction, while data augmentation
methods utilize the same transformed samples despite of
the current state of the learned metric. Moreover, different
from most existing data augmentation methods which employ
simple geometric transformations such as mirroring, rotating
and oversampling, we generate synthetic samples in the feature
space with stronger flexibility.

C. Difference With Existing Multi-Metric Learning Methods

There have been many studies on multi-metric learning
which learn multiple metrics for more precise description, such
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as [2], [24], [42], [71]. However, most of these multi-metric
learning methods are trained on the original data, where the
challenge of how to simultaneously train the hard negative
generator and the multi-metric still remains. As the training
objectives of generator and multi-metric are opposite, it is hard
for the generator to fool all the metrics at the same time,
and DAMML is the first attempt to address this problem in
multi-metric learning. While we cannot directly apply existing
multi-metric methods, we design an additional discriminator to
learn the weight of each metric. To this end, the discriminator
decides better local metrics for complete description of each
sample, the generator creates more powerful hard negatives
that especially fool the metrics with higher weights, and the
multiple local metrics learn better cooperation against the
generator with Jgis.

D. Hard Positive Generation

As DAML and DAMML aim to generate synthetic hard neg-
ative samples from easier ones for full exploitation, an intuitive
similar idea is to create hard positive samples. It is reasonable
because hard positives also play more important roles than
easy positives by producing larger gradients. The reason we
choose to only generate hard negatives is that there are much
more easy negative samples than easy positive samples that are
ignored by the existing approaches, which makes hard negative
generation much more important. Moreover, negative samples
have larger variations compared with positive samples to
generate more effective synthetic samples. In the experiments,
we also design a similar algorithm to test the performance of
hard positive generation.

VI. EXPERIMENTS

In this section, we conducted experiments on five widely-
used benchmark datasets for both retrieval and clustering
tasks to demonstrate the effectiveness of the proposed DAML
and DAMML, which included the CUB-200-2011 [62],
Cars196 [29], Stanford Online Products [55], In-Shop Clothes
Retrieval [36] and VehicleID [34] datasets.

For the clustering task, we followed [55] to perform
K-means algorithm in the test set, and then use the normalized
mutual information (NMI) and F; metrics. The input of NMI
is a set of clusters Q = {wj, -+ ,wg} and the ground truth
classes C = {cy,---,ck}, where w; represents the samples
belonging to the ith cluster, and c; is the set of samples
with the label of j. NMI is defined as the ratio of mutual
information and the mean entropy of clusters and the ground
truth:

21(Q; C)
NMI(Q, C) = HO) 1 HO)' (17)
and F; metric is the harmonic mean of precision and recall:
o 2PR )
P+ R

For the retrieval task, we computed the percentage of test
samples which have at least one example with the same label
in R nearest neighbors.
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TABLE I
OVERVIEW OF THE COMPARED BASELINE METHODS

Method Embedding  Supervision
DDML [23] Contrastive Weak
Tri+N-pair [63] Batch Strong
Angular [63] Triplet Strong
Contrastive [20]  Contrastive Weak
Triplet [68] Triplet Strong
Lifted [55] Batch Strong
N-pair [53] Batch Strong
A. Datasets

We conducted experiments on five widely-used benchmark
datasets to evaluate DAML and DAMML with the standard
evaluation protocol [29], [34], [36], [55], [62] to demonstrate
the effectiveness of the proposed methods:

1) The CUB-200-2011 dataset [62] includes 11,788 images
of 200 bird species. We used the first 100 species with
5,864 images for training, and the rest 100 species with
5,924 images for testing.

2) The Cars196 dataset [29] contains 16,185 images
of 196 car models. We used the first 98 models with
8,054 images for training, and the remaining 98 models
with 8,131 images for testing.

3) The Stanford Online Products dataset [55] consists
of 120,053 images of 22,634 products from eBay.com.
We used the first 11,318 products with 59,551 images
for training, and the other 11,316 products with
60,502 images for testing.

4) The In-Shop Clothes Retrieval dataset [36] has
54,642 images of 11,735 classes of clothes. We used the
predefined 3,997 classes with 25,882 images for training,
3,985 classes with 14,218 images as the query set, and
the other 3,985 classes with 12,612 images as the gallery
set.

5) The VehicleID dataset [34] contains 221,763 images
of 26,267 vehicles. We used the predefined 13,134 vehi-
cles with 110,178 images for training, and the rest Small,
Medium and Large subsets for testing.

B. Baseline Methods

We applied the framework of adversarial metric learning
on four baseline methods as mentioned above for direct com-
parisons, which include the wildly-used contrastive embed-
ding [20], triplet embedding [68] and the more recent lifted
structure [55] and N-pair loss [53]. We also compared DAML
and DAMML with other three baseline methods for evaluation
including DDML [38], triplet loss with N-pair sampling [63]
and angular loss [63]. For all the baseline methods and
the proposed DAML and DAMML, we employed the same
GoogleNet architecture pre-trained on ImageNet for fair com-
parisons, while fixing the embedding size as 512. Table I
shows an overview of the compared baseline methods. More
recently, there are metric learning methods selecting multiple
input pairs or triplets from one batch, where we summarize the
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(a) A1 and A2 (b) p and A\

Fig. 7. The R@1 performance (%) on the CUB-200-2011 dataset of
(a) DAML (N-pair) under varying 41 and 4y, and (b) DAMML (N-pair)
under different ¢ and A with K = 4.

TABLE II

THE R@ 1 PERFORMANCE (%) ON THE CARS196 DATASET OF
DAML (N-PAIR) UNDER VARYING EMBEDDING SIZES

128
73.2

256 512
744 751

1024
74.8

Embedding size 64
DAML (N-pair) 73.4

type of embedding as “batch” in Table I. We observe that the
compared baseline methods cover the widely-used contrastive,
triplet and batch embedding methods, and they also contain
both weak and strong supervision signals.

C. Quantitative Results

In this subsection, we show the quantitative experimental
results of DAML and DAMML on the baseline datasets.

1) Parameter Analysis: We first tested the retrieval results
of R@1 for DAML (N-pair) on the Cars196 dataset, under
varying parameters Ay and Ay of Jgeq fixing A as 1. Fig. 7 (a)
shows that the values of A1 and A, should be set as 1 and 50,
respectively. We observe that A, largely influences the per-
formance of DAML, where the goal of J,gy is to generate
metric-specific hard negatives by targeting at the weakness of
the current metric. Without J,4y, the hard negative generator
acts more like a machine of data augmentation, which provide
new data at first despite of the learned metric. However, data
augmentation fails to generate targeted hard negative samples,
which may not be able to target at the weakness of the current
distance metric. Moreover, a too large A, may also lead to
uncontrolled hard negative generation. Then, we tested u and
A for DAMML (N-pair), setting K = 4. Fig. 7 (b) shows that
the best values are 107 and 1. We observe that the performance
drops heavily when 4 becomes larger. As 4 is the weight for
the metric loss Jp,, large 4 will weaken the effect of the hard
negative generator. The experimental results demonstrate the
effectiveness of the hard negative generation.

We also tested the influence of embedding size of DAML
(N-pair) and the number of multiple metrics for DAMML
(N-pair) on the Cars196 dataset. Table II shows the experi-
mental performance under different embedding sizes. We have
a similar observation with [55] that the embedding size does
not largely affect the experimental performance, and we set
the embedding size as 512 for the rest of the experiments
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TABLE III

THE R@1 PERFORMANCE (%) ON THE CARS196 DATASET OF DAMML
(N-PAIR) UNDER VARYING NUMBERS OF METRICS

Number of metrics 1 2 4 8 16
DAMML (N-pair) 75.1 758 778 77.6 76.3
TABLE 1V

EXPERIMENTAL RESULTS (%) ON THE CUB-200-2011 DATASET
COMPARED WITH BASELINE METHODS

Method NMI F;, R@l R@2 R@4 R@$
DDML [23] 473 131 312 416 547 671
Tri+N-pair [63] 541 200 428 549 662 776
Angular [63] 61.0 302 536 650 753 837
Contrastive [20] 472 125 272 363 498 621
DAML (cont) 491 162 357 484 608 73.6
DAMML (cont) 508 17.1 369 494 614 741
Triplet [68] 498 150 359 477 591 700
DAML (tri) 513 17.6 376 493 613 744
DAMML (iri) 53.0 189 399 51.6 635 749
Lifted [55] 564 226 469 598 712 815
DAML (lifted) 595 266 490 622 737 833
DAMML (lifted)  60.3 288 504 63.6 749 84.2
N-pair [53] 602 282 519 643 749 832
DAML (N-pair) 613 295 527 654 755 84.3
DAMML (N-pair) 624 309 539 667 764 854

for DAML. For the experiments of DAMML, we fix the
total embedding size (the sum of the local embedding sizes)
as 512 for fair comparisons, so that the embedding size of
each local metric is smaller with a larger K. Table III shows
that the performance is improved with the increase of K
at the beginning, and then drops when K is too large. The
reason is that the multiple metrics better describe the locality
information with larger K at the beginning, yet the embedding
size of each metric is too small for effective description when
K is over large. In the following experiments, we fix K = 4
according to the results of Table III.

2) Comparison With the Baseline Methods: Table IV-VIII
show the experimental results of DAML and DAMML com-
pared with baseline methods on the CUB-200-2011, Cars196,
Stanford Online Product, In-Shop Clothes Retrieval and Vehi-
cleID datasets, respectively. In the tables, bold numbers
represent that DAML improves the results of the original
metric learning algorithms, and DAMML further boosts the
performance of DAML with multiple local metrics. We use
the red color to show the best results and numbers in blue
color represent the second best performance.

We observe that the proposed DAML improves the per-
formance of original metric learning approaches on all the
benchmark datasets. In particular, although the contrastive
embedding receives weak supervision where the generator is
only applied to the negative pairs instead of all the inputs,
DAML still improves the performance on both clustering and
retrieval tasks. Combined with the effective Lifted structure
and N-pair loss, the proposed DAML (lifted) and DAML
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TABLE V

EXPERIMENTAL RESULTS (%) ON THE CARS196 DATASET
COMPARED WITH BASELINE METHODS

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

TABLE VII

EXPERIMENTAL RESULTS (%) ON THE IN-SHOP CLOTHES RETRIEVAL
DATASET COMPARED WITH BASELINE METHODS

Method NMI F R@1 R@2 R@4 R@S8 Method R@l R@10 R@20 R@30 R@40
DDML [23] 41.7 109 327 439 56.5 68.8 DDML [23] 24.4 47.8 55.6 60.4 64.2
Tri+N-pair [63] 543 19.6 463 599 714 81.3 Tri+N-pair [63] 57.5 82.2 87.6 89.8 92.8
Angular [63] 624 318 713 80.7 87.0 918 Angular [63] 80.4 93.9 95.7 96.5 97.1
Contrastive [20] 423 105 27.6 38.3 51.0 639 Contrastive [20] 237 475 559 60.6 63.8
DAML (cont) 42.6 114 372 496 618 733 DAML (cont) 26.0 50.1 57.9 62.5 65.6
DAMML (cont) 4.1 126 391 511 632 743 DAMML (cont) 28.0 54.2 62.3 67.2 70.4
Triplet [68.] 529 179 45.1 57.4 69.7 79.2 Triplet [68] 56.1 82.0 86.8 892 90.6
DAML (tri) ' 56.5 229 606 725 825 899 DAML (tri) 59.1 84.5 89.1 90.9 923
DAMML (tri) 583 257 614 730 829 90.2 DAMML (tri) 63.1 85.6 90.0 92.0 93.2
Lifted [55] 578 251 599 704 796 870 Lifted [55] 753 931 955 964 970
DAML (llft?d) 63.1 319 725 82.1 88.5 92.9 DAML (lifted) 773 93.9 96.0 96.8 97.2
DAMML (lifted) 650 335 735 828 895 937 DAMML (lifted) 797 9.3 96.3 97.1 975
N-pair [53] ' 627 31.8 689 789 85.8 90.9 N-pair [53] 76.4 23.6 94.7 95.6 96.2
DAML (N-palr). 66.0 364 75.1 838 89.7 935 DAML (N-pair) 78.9 93.8 95.7 9.6 97.1
DAMML (N-pair) 69.2 38.7 77.8 86.1 91.8 952 DAMML. (I?I-pair) 80‘8 9 4' 6 9 6‘ 4 97'2 97'7
TABLE VI TABLE VIII

EXPERIMENTAL RESULTS (%) ON THE STANFORD ONLINE PRODUCTS
DATASET COMPARED WITH BASELINE METHODS

Method NMI F, R@l1 R@10 R@100
DDML [23] 83.4 10.7 421 57.8 73.7
Tri+N-pair [63] 86.4 21.0 58.1 76.0 89.1
Angular [63] 87.8 26,5 679 83.2 92.2
Contrastive [20] 824 10.1 37.5 53.9 71.0
DAML (cont) 835 109 417 57.5 73.5
DAMML (cont) 839 114 423 57.9 73.9
Triplet [68] 86.3 202 539 72.1 85.7
DAML (tri) 871 223 58.1 75.0 88.0
DAMML (tri) 87.7 23.0 598 76.7 89.5
Lifted [55] 872 253 626 80.9 91.2
DAML (lifted) 89.1 31.7 66.3 82.8 92.5
DAMML (lifted) 90.2 328 67.0 834 93.2
N-pair [53] 879 27.1 664 82.9 92.1
DAML (N-pair) 894 324 684 83.5 92.3
DAMML (N-pair) 91.5 34.8 704 84.6 93.4

(N-pair) obtain encouraging performance on all the benchmark
datasets. While the lifted structure and N-pair loss have
obtained the outstanding results, DAML further boosts the
performance to achieve the state-of-the-arts. Compared with
existing methods which only exploit the observed negative
samples in their original form, our DAML taps the potential
of numerous easy negatives to fully describe the hard nega-
tive distributions. As DAML simultaneously trains the hard
negative generator and feature embedding in an adversarial
manner, the learned distance metric shows strong robustness
with adequate and targeted synthetic hard negative samples.
Moreover, we also find that DAMML further boosts the per-
formance of DAML with different J,,,. DAML only learns one
global metric for the dataset, which may not be discriminative
enough for effective distance measurement. Once a global
metric fails to have the ability to correctly classify the synthetic

EXPERIMENTAL RESULTS (%) ON THE VEHICLEID DATASET
COMPARED WITH BASELINE METHODS

Small Medium Large

Method

R@l R@5 R@l R@5 R@l R@5
DDML [23] 351 508 305 468 279 439
Tri+N-pair [63] 583 763 307 46,6 291 453
Angular [63] 654 767 609 727 575 69.0
Contrastive [20] 345 493 307 465 286 453
DAML (cont) 352 501 314 471 303 475
DAMML (cont) 371 516 333 479 312 479
Triplet [68] 582 759 515 702 467 654
DAML (tri) 589 770 523 711 482 673
DAMML (tri) 60.1 779 528 71.7 489 68.2
Lifted [55] 632 770 593 747 556 719
DAML (lifted) 638 777 602 759 56.0 72.7
DAMML (lifted) 647 785 609 771 568 734
N-pair [53] 702 845 648 806 61.8 782
DAML (N-pair) 714 851 659 814 632 80.0
DAMML (N-pair) 72.5 861 669 825 651 810

hard negatives, the generator will not learn to create harder
negatives. Instead, DAMML learns multiple local metrics for
complete description of local areas, which balances the power
of the hard negative generator and the distance metric. With the
learned metric discriminator, the correlation of local metrics
is minimized, so that they cover more local regions with less
overlapping and obtains better results than DAML.

3) Comparison With Hard Negative Mining Methods: In
this subsection, we compared our DAML with recent hard
negative mining methods on the Cars196 dataset. We initial-
ized with the same structure of GoogleNet and employed
the triplet loss, comparing the proposed DAML with recent
sampling methods such as N-pair sampling [53], semi-hard
sampling [49], and fast approximate nearest neighbour graph
(FANNG) [21]. N-pair sampling aims to sample training
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TABLE IX

EXPERIMENTAL RESULTS (%) ON THE CARS196 DATASET COMPARED
WITH VARYING SAMPLING STRATEGIES

Method R@l R@2 R@4 R@S8
Triplet [68] 45.1 574 697 792
N-pair sampling [53] 463 599 714 813
Semi-hard sampling [49] 524 652 75.1 84.3
FANNG sampling [21] 582 706 789  86.7
DAML 60.6 725 825 899
DAML + Semi-hard 62.7 742 839 910

triplets through the N-pair strategy. Semi-hard sampling is a
easy but effective method, which aims to select hard negative
samples with the constraints of easier than positive ones.
FANNG develops a smart mining method to produce effective
training samples with low computational costs. For fair com-
parisons, all the methods employ the same network structure
of GoogLeNet, initialization, and triplet loss, where the only
difference is the selection of the training data. Table IX shows
that DAML achieves better results with the recent sampling
methods. The key difference between DAML and conventional
hard negative mining methods is that DAML exploits the
potential of samples through hard negative generation rather
than sampling. Moreover, while most existing sampling meth-
ods are especially designed for specific loss functions (usually
contrastive and triplet losses), the proposed DAML presents
stronger adaptability to more existing objectives such as the
recent lifted and N-pair losses. From the experimental results
shown in the above subsection, we observe that it is more
important to boost the performance of the recent losses to
achieve the state-of-the-art performance. As aforementioned,
DAML does not conflict with hard negative mining, and
Table IX also illustrates that the better performance is achieved
by simultaneously employing hard negative generation and
sampling methods. We still discover that the performance gap
between DAML and DAML + Semi-hard is much smaller
than that of Triplet and Triplet + Semi-hard, because DAML
takes fully advantages of easy negative samples. The more
important roles easy negative samples are played, the less
advantages sampling strategies are brought. The experimental
results also show that DAML better exploits large numbers of
easy negative samples for effective model training.

4) Evaluation of the Metric Discriminator: The met-
ric discriminator plays an important role in DAMML for
data-adaptive weights allocation. In the training procedure,
the metric discriminator encourages both collaborative and
competitive relationships among local metrics by arranging
varying weights to each metric, so that the local metrics learn
effective and independent distance measurement against the
hard negative generator. In the test procedure, the learned
metric discriminator can also provide data-adaptive weights
for local metrics to compute the final distance between a pair
of samples. Compared with hand-crafted methods, the metric
discriminator learns data-dependent weights for local metrics,
where the distances between sample pairs obtain more precise
measurement with proper local metrics.

2047

TABLE X

EXPERIMENTAL RESULTS (%) ON THE CARS196 DATASET COMPARED
WITH VARYING WEIGHTING STRATEGIES

Method R@l R@2 R@4 R@S8
N-pair [53] 689 789 858 909
DAML 751 838 897 935
DAMML (T = &) 754 839 899 935
DAMML 778 861 918 952

In order to test the effectiveness of the metric discriminator,
we conducted an experiment by fixing I' = % for both
training and test procedures. Table X shows the experimental
comparisons on the Cars196 dataset with N-pair loss for Jp
and K = 4. In the training procedure, a fixed weight leads
to highly correlated local metrics, as they share the same
objective function and training data, and the differences among
multiple metrics mainly come from varying initializations.
In the test procedure, multiple local metrics present equal
importance to measure the final distance between varying
sample pairs, which fails to completely exploit the local
information of each sample pair. We observe that with fixed
weights for local metrics, DAMML still obtains comparable
results with DAML due to the exploitation of local informa-
tion, while the learned discriminator successfully boosts the
performance of multi-metric learning with less dependency
and more precise description of different pairs.

5) Stability Analysis: In order to show the stability of the
proposed DAML and DAMML, we first tested the perfor-
mance on the Cars196 dataset for 10 times. Table XI shows
that the results are relatively stable for multiple tests.

In Fig. 7, we tested the influence of the hyperparameters.
However, range of values is relatively narrow in Fig. 7.
Therefore, we further show the results when A; or A is
not well chosen. More specifically, we fixed 1; and 1, to
1 and 50, respectively, and tested the influence of the other
hyperparameter on the Cars196 dataset. Table XII and XIII
show the results. We observe that the results are still stable
even when choosing bad 1; and 4, for 0.1 and 1000.

6) Evaluation of Hard Positive Generation: As DAML
focuses on tapping the potential of numerous negative samples,
it is an interesting idea to generate hard positive samples for
more effective training. As minimizing intra-class variations
is one of the most important objectives for existing loss
functions, hard positives also provide gradients with large
magnitudes and present more important roles in model train-
ing. In this experiment, we tested the performance of hard
positive generation with the triplet embedding, using the same
network structure and similar objective function with Jgen:

inJP =
min Joen =
&

)4 P
Jhard + /11 Jrgg + /12 Jadv

N

< 2 < 2

= D> (IR = xill3 + % =113
i=1

+22[D(x; %) = D&, xi)* —aly).  (19)

In (19), the first term aims to generate hard positive samples
far from the anchors in the original feature space. The second
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TABLE XI
EXPERIMENTAL RESULTS (%) ON THE CARS196 DATASET

Method NMI F1 R@1 R@2 R@4 R@8

DAML (cont) 4244+11 115£05 374+04 495+£05 61504 73.1+0.1
DAMML (cont) 443+£16 124£12 389£12 51.2+£10 63.2+05 742405
DAML (tri) 56.6 1.6 229+11 60711 724409 823+£06 89.840.6
DAMML (tri) 584+1.0 256+£05 61.4+£04 731£04 83.0£04 90.2£0.1
DAML (lifted) 63.0+1.8 320+£14 723£16 820£12 883£09 928£05
DAMML (lifted) 64.9+1.5 335+1.1 736+13 825+09 89.3+06 934104
DAML (N-pair) 66.2+16 36.6+£1.1 753£12 839£08 89.7£05 93.6x=04
DAMML (N-pair) 69.2+14 386+12 776+1.3 86.1+08 91.9+05 95.2+0.3

TABLE XII
4 = Pairwise 5 = Triplet
THE R@1 PERFORMANCE (%) ON THE CARS196 DATASET OF —— DAML(m) ——— DAML{/m)

DAML (N-PAIR) UNDER VARYING 41

A1 0.1 1 5 10 50 100 500 1000
Re@l 722 729 736 744 751 750 746 73.1
TABLE XIII

THE R@ 1 PERFORMANCE (%) ON THE CARS196 DATASET OF
DAML (N-PAIR) UNDER VARYING Ay

A2 0.1 1 5 10 50 100 500 1000
R@1 746 751 748 749 741 742 734 725
TABLE XIV

EXPERIMENTAL RESULTS (%) ON THE CARS196 DATASET
COMPARED WITH HARD POSITIVE GENERATION

Method R@l R@2 R@4 R@8
Triplet 45.1 574 697 7192
DAML (positive) 462 58.6  70.7 79.6
DAML (negative) 60.6 72.5 825 899

term minimizes the distance between the generated positive
samples and the corresponding original samples to preserve the
annotation information. The third term tries to fool the learned
distance metric in a “semi-hard” manner with the margin a.
Table XIV shows the comparison of hard negative gener-
ation and hard positive generation on the Cars196 dataset.
We observe that the hard positive generation method obtains
comparable results with the original triplet loss on the dataset.
The reason is that there are usually much more negatives than
positives in the training set, and it is less important to generate
hard positive samples. The proposed hard negative generation
approach largely outperforms hard positive generation due to
the larger numbers and variations of negative samples.

7) Convergence Time: Our hardware configuration com-
prises of a 2.8-GHz CPU and a 32G RAM. As we applied the
GooglLeNet to initialize our CNN, we utilized a GTX 1080 Ti
GPU for acceleration. We compared the loss plots of DAML
as well as the corresponding baselines on the Cars196 dataset
as shown in Fig. 8. We plotted the average loss for each epoch,

—— DAML{/ger)

s DAML(/gen)

0 20 40 60 80 100 0 20 40 60 80 100

(a) Pairwise loss (b) Triplet loss

Fig. 8.
methods.

Loss plots of Jm and Jgen in DAML and different corresponding

and drew the curves of Jy and Jgen with the parameter 4 to
balance the weights for DAML, respectively. We observe that
DAML effectively accelerates the convergence of the metric
term compared with the corresponding methods due to the
generation of hard negative samples. Moreover, the training
curves of J, in DAML are more smooth than the original
method. As DAML generates targeted hard negative samples
in the training procedure, the input synthetic samples target
at the weakness of the current metric for effective training at
each iteration.

D. Qualitative Results

Fig. 9 shows the t-SNE [60] visualization results of
DAMML (N-pair) on the CUB-200-2011 dataset. We highlight
some local regions with red boxes. Due to the limitation in
space, we put the visualization results of DAML (N-pair)
for the CUB-200-2011, Cars196, Stanford Online Products,
In-Shop Clothes Retrieval and VehicleID datasets in the sup-
plementary material. We enlarge several specific regions to
highlight the representative classes at the corner of each
figure. The visualization results will be relatively dense if the
dataset contains more images. We observe that even though
the images from the same class suffer from large variations
such as different backgrounds, viewpoints, colors, poses and
configurations, the proposed DAMML (N-pair) is still able
to group similar samples with effective distance measure-
ment. With hard negative generation, the negative samples
are pushed away even in their most dangerous forms, which
improves the performance of the visualization results. The
visualization results on the benchmark datasets demonstrate
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Fig. 9. Barnes-Hut t-SNE [60] visualization of the proposed DAMML (N-pair) on the CUB-200-2011 dataset, where the color of the border for each image

represents the label. (Best viewed on a monitor when zoomed in.)
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Fig. 10. Barnes-Hut t-SNE [60] visualization comparison between DAML
and DAMML on the same subset of CUB-200-2011.

the effectiveness of DAMML in an intuitive manner. In order
to show the comparisons between DAML and DAMML,
we further visualized the embeddings of DAML (N-pair) and
DAMML (N-pair) on the same randomly-selected 10 classes
of CUB-200-2011 and Fig. 10 shows the result. We observe
that in the highlight areas, DAMML better classifies the similar
negative samples.

VII. CONCLUSION

In this paper, we have proposed a framework of deep adver-
sarial metric learning (DAML), which can be generally applied
to various supervised metric learning approaches. Unlike
existing metric learning approaches which simply ignore a
large number of easy negative samples, DAML exploits easy
negatives to generate synthetic hard negatives adversarial to

the learned metric as important complements to the observed
samples. While the widely-used hard negative mining methods
mainly focus on selecting negative samples that trigger false
alarms, DAML aims to fully tap the potential of each negative
sample. As the global metric may not be powerful enough to
describe the whole feature space especially under the attack of
the hard negative generator, we have further presented a deep
adversarial multi-metric learning (DAMML) method for more
precise description of local information. We have designed
a metric discriminator to learn the weights for local metrics
of each input pair, which encourages both collaborative and
competitive relationships among metrics against the hard neg-
ative generator. With the metric discriminator, multiple local
metrics present more precise final distance measurement with
less correspondence. Experimental results show that DAML
and DAMML effectively improve the performance of existing
deep metric learning methods in an adversarial manner.
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